Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://orbilu.uni.l...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://orbilu.uni.lu/bitstrea...
Article
License: CC BY NC SA
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research.fi
Article . 2023 . Peer-reviewed
Data sources: Research.fi
https://doi.org/10.1109/icc.20...
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Successive zero-forcing DPC with sum power constraint: Low-complexity optimal designs

Authors: Le-Nam Tran; Markku Juntti; Mats Bengtsson; Björn Ottersten;

Successive zero-forcing DPC with sum power constraint: Low-complexity optimal designs

Abstract

Successive zero-forcing dirty paper coding (SZF-DPC) is a simplified alternative to DPC for MIMO broadcast channels (MIMO BCs). In the SZF-DPC scheme, the noncausally-known interference is canceled by DPC, while the residual interference is suppressed by the ZF technique. Due to the ZF constraints, the precoders are constrained to lie in the null space of a matrix. For the sum rate maximization problem under a sum power constraint, the existing precoder designs naturally rely on the singular value decomposition (SVD). The SVD-based design is optimal but needs high computational complexity. Herein, we propose two low-complexity optimal precoder designs for SZF-DPC, all based on the QR decomposition (QRD), which requires lower complexity than SVD. The first design method is an iterative algorithm to find an orthonormal basis of the null space of a matrix that has a recursive structure. The second proposed method, which will be shown to require the lowest complexity, results from applying a single QRD to the matrix comprising all users' channel matrices. We analytically and numerically show that the two proposed precoder designs are optimal.

Keywords

Low-complexity, Optimal design, Optimization, Design, Residual interference, Precoder design, Telecommunication links, Sum-rate, : Electrical & electronics engineering [C06] [Engineering, computing & technology], QR decomposition, Maximization problem, Iterative algorithm, Channel matrices, Power constraints, : Ingénierie électrique & électronique [C06] [Ingénierie, informatique & technologie], Precoders, Lower complexity, Recursive structure, Singular value decomposition, Orthonormal basis, Radio broadcasting, MIMO broadcast channels, Design method, Null space, Dirty paper coding, Interference suppression, Zero-forcing, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green