Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Archive o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Innovative Biosystems and Bioengineering
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Intensification of the Biohydrogen Production Process

Інтенсифікація процесу отримання біоводню
Authors: Nataliia Golub; Liudmyla Zubchenko; Iryna Demianenko; Yumei Zhang; Nataliia Seminska;

Intensification of the Biohydrogen Production Process

Abstract

Background. In the last decades, humanity has faced the challenge of finding new ways to obtain renewable, environmentally friendly energy carriers. Hydrogen is one of such energy carriers; however, the current methods of its production require fossil fuels and are accompanied by significant CO2 emissions. Consequently, the energy costs needed to obtain hydrogen by electrolysis exceed the amount of energy produced by burning the hydrogen. Simultaneously, the hydrogen yields for alternative ways, such as fermentation, remain low. Objective. The aim of the work is the development of approaches to intensify the biohydrogen obtaining process from agricultural waste. Methods. An increase in hydrogen yield was achieved using specifically grown microorganisms of the Clostridium spp. A combination of the waste fermentation process with the production of hydrogen in a microbial fuel cell (MFC), which was fed with the liquid fraction after fermentation, was employed. Results. The yield of hydrogen depends on the component composition of the raw material. Higher lignin content in the raw material reduces the yield of hydrogen. The addition of Clostridium spp. to the natural consortium in the amount of 10% of the total inoculum led to an increase in hydrogen yield. The combination of two processes – fermentation and hydrogen production in a MFC – increased the yield of hydrogen by 1.7 times, along with a higher degree of organic raw materials utilization. Conclusions. The additional introduction of Clostridium spp. to the hydrogen-producing consortium leads to a 7–10% increase in the yield of hydrogen, depending on the composition of the raw material. The yield of hydrogen obtained in the fermentation process for the substrate containing corn silage is 12 ± 1% higher than for the wheat straw. In general, the combination of the fermentation and hydrogen production in the MFC in a two-stage process leads to an overall increase in the yield of hydrogen by 60 ± 5%.

Keywords

QH301-705.5, biohydrogen, сільськогосподарські відходи, біоводень, відновлювані енергоносії, асоціація мікроорганізмів, microbial fuel cell, agricultural wast, microbial consortium, мікробний паливний елемент, renewable energy carriers, agricultural waste, Biology (General)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
gold