Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mathematical Logic Q...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mathematical Logic Quarterly
Article . 1993 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 1993
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Seperating the intrinsic complexity and the derivational complexity of the word problem for finitely presented groups

Separating the intrinsic complexity and the derivational complexity of the word problem for finitely presented groups
Authors: Cohen, Daniel E.; Madlener, Klaus; Otto, Friedrich;

Seperating the intrinsic complexity and the derivational complexity of the word problem for finitely presented groups

Abstract

AbstractA pseudo‐natural algorithm for the word problem of a finitely presented group is an algorithm which not only tells us whether or not a word w equals 1 in the group but also gives a derivation of 1 from w when w equals 1. In [13], [14] Madlener and Otto show that, if we measure complexity of a primitive recursive algorithm by its level in the Grzegorczyk hierarchy, there are groups in which a pseudo‐natural algorithm is arbitrarily more complicated than an algorithm which simply solves the word problem. In a given group the lowest degree of complexity that can be realised by a pseudo‐natural algorithm is essentially the derivational complexity of that group. Thus the result separates the derivational complexity of the word problem of a finitely presented group from its intrinsic complexity. The proof given in [13] involves the construction of a finitely presented group G from a Turing machine T such that the intrinsic complexity of the word problem for G reflects the complexity of the halting problem of T, while the derivational complexity of the word problem for G reflects the runtime complexity of T. The proof of one of the crucial lemmas in [13] is only sketched, and part of the purpose of this paper is to give the full details of this proof. We will also obtain a variant of their proof, using modular machines rather than Turing machines. As for several other results, this simplifies the proofs considerably. MSC: 03D40, 20F10.

Keywords

pseudo-natural algorithm, word problems for groups, modular machines, Word problems, other decision problems, connections with logic and automata (group-theoretic aspects), Turing machines, complexity, Word problems, etc. in computability and recursion theory, halting problem

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!