Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACM Transactions on Embedded Computing Systems
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Timetide: A Programming Model for Logically Synchronous Distributed Systems

Authors: Logan Kenwright; Partha Roop; Nathan Allen; Calin Cascaval; Avinash Malik;

Timetide: A Programming Model for Logically Synchronous Distributed Systems

Abstract

Massive strides in deterministic models have been made using synchronous languages. They are mainly focused on centralised applications, as the traditional approach is to compile away the concurrency. Time triggered languages such as Giotto and Lingua Franca are suitable for distribution albeit that they rely on physical clock synchronisation, which is both expensive and may suffer from scalability. Hence, deterministic programming of distributed systems remains challenging. We address the challenges of deterministic distribution by developing a novel multiclock semantics of synchronous programs. The developed semantics is amenable to seamless distribution. Moreover, our programming model, Timetide, alleviates the need for physical clock synchronisation by building on the recently proposed logical synchrony model for distributed systems. We discuss the important aspects of distributing computation, such as network communication delays, and explore the formal verification of Timetide programs. To the best of our knowledge, Timetide is the first multiclock synchronous language that is both amenable to distribution and formal verification without the need for physical clock synchronisation or clock gating.

Keywords

FOS: Computer and information sciences, Programming Languages, Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC), Programming Languages (cs.PL)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green