Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UNSWorksarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Urban Forestry & Urban Greening
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mapping and classifying green infrastructure typologies for climate-related studies based on remote sensing data

Authors: Bartesaghi Koc, Carlos; Osmond, Paul; Peters, Alan;

Mapping and classifying green infrastructure typologies for climate-related studies based on remote sensing data

Abstract

Abstract Despite the current evidence on the thermal benefits of vegetation and water bodies, further research is needed to investigate how cooling capacities are influenced by particular types, amounts, and spatial arrangements of green infrastructure (GI). However, there are no commonly agreed typologies that can be confidently used to compare and report the existing climatological effects of GI. Two previous studies were conducted to respond to this gap, and a conceptual GI typology matrix was developed according to functional, structural and configurational attributes. The present research presents a streamlined version and tests its applicability for the automated mapping, classification and thermal evaluation of GI using remote sensing data. A combination of parameters is introduced, including surface cover fractions and FRAGSTATS metrics estimated from very high-resolution hyperspectral imagery, LiDAR and cadastral data. The proposed framework can be applied at different spatial scales to analyse large urban areas rapidly and with high spatial accuracy. This paper also proposes a replicable workflow that can be implemented by researchers and practitioners to map existing vegetation conditions, prioritise greening interventions and assess thermal conditions with greater confidence. In this study, this workflow was successfully applied at local scale to classify green open spaces, tree canopies and water bodies in the city of Sydney. Evidence presented here demonstrates the applicability of the proposed system to evaluate and compare the intra- and inter-typology variability of land surface temperatures (LSTs), which can be potentially applied for performance assessment across other ecosystem service categories. Despite satisfactory results, the proposed typology is contingent on further developments and tests on a larger spatial extent and with a greater number of observations. Further statistical analysis is also required to determine the cooling capacity of typologies and quantify the influence of measured parameters on LSTs.

Country
Australia
Related Organizations
Keywords

anzsrc-for: 0502 Environmental Science and Management, 550, Urban heat island, automated classification, anzsrc-for: 4406 Human geography, 710, heat mitigation, 333, anzsrc-for: 3007 Forestry sciences, anzsrc-for: 0705 Forestry Sciences, thermal assessment, ecosystem services, anzsrc-for: 4104 Environmental management, urban greening

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    81
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
81
Top 1%
Top 10%
Top 1%
Green