
Genome sequence analysis is a powerful tool in medical and scientific research. Considering the inevitable sequencing errors and genetic variations, approximate string matching (ASM) has been adopted in practice for genome sequencing. However, with exponentially increasing bio-data, ASM hardware acceleration is facing severe challenges in improving the throughput and energy efficiency with the accuracy constraint. This paper presents ASMCap, an ASM acceleration approach for genome sequence analysis with hardware-algorithm co-optimization. At the circuit level, ASMCap adopts charge-domain computing based on the capacitive multi-level content addressable memories (ML-CAMs), and outperforms the state-of-the-art ML-CAM-based ASM accelerators EDAM with higher accuracy and energy efficiency. ASMCap also has misjudgment correction capability with two proposed hardware-friendly strategies, namely the Hamming-Distance Aid Correction (HDAC) for the substitution-dominant edits and the Threshold-Aware Sequence Rotation (TASR) for the consecutive indels. Evaluation results show that ASMCap can achieve an average of 1.2x (from 74.7% to 87.6%) and up to 1.8x (from 46.3% to 81.2%) higher F1 score (the key metric of accuracy), 1.4x speedup, and 10.8x energy efficiency improvement compared with EDAM. Compared with the other ASM accelerators, including ResMA based on the comparison matrix, and SaVI based on the seeding strategy, ASMCap achieves an average improvement of 174x and 61x speedup, and 8.7e3x and 943x higher energy efficiency, respectively.
Accepted by Design Automation Conference (DAC) 2023
FOS: Computer and information sciences, Hardware Architecture (cs.AR), Computer Science - Hardware Architecture
FOS: Computer and information sciences, Hardware Architecture (cs.AR), Computer Science - Hardware Architecture
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
