
The safety of battery energy storage systems (BES) is of paramount importance for societal development and the wellbeing of the people. This is particularly true for retired batteries, as their performance degradation increases the likelihood of thermal runaway occurrences. Existing early warning methods for BES thermal runaway face two main challenges: mechanism-based research methods only consider a single operating state, making their application and promotion difficult; while data-driven methods based on supervised learning struggle with limited sample sizes. To address these issues, this paper proposes a data-driven early warning method for BES thermal runaway. The method utilizes unsupervised learning to create a framework that measures BES differences through reconstruction errors, enabling effective handling of limited samples. Additionally, ensemble learning is employed to enhance the method’s stability and quantify the probability of BES experiencing thermal runaway. To accurately capture the time-varying behaviors of BES, such as voltage, temperature, current, and state of charge (SOC), and detect performance differences in BES before and after thermal runaway, a bidirectional long short-term memory (Bi-LSTM) network with an attention mechanism is utilized. This approach effectively extracts features from training data. Subsequently, a Case study was conducted using the actual operation data of retired lithium batteries to verify the effectiveness of the proposed method.
energy storage battery, A, thermal runaway warning, unsupervised learning, General Works, data-driven method, retired lithium batteries
energy storage battery, A, thermal runaway warning, unsupervised learning, General Works, data-driven method, retired lithium batteries
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
