Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tunnelling and Under...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Tunnelling and Underground Space Technology
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of scale ratio and aspect ratio in predicting the longitudinal smoke-temperature distribution during a fire in a road tunnel with vertical shafts

Authors: Takeuchi, S; Tanaka, Futoshi; Yoshida, K; Moinuddin, Khalid;

Effects of scale ratio and aspect ratio in predicting the longitudinal smoke-temperature distribution during a fire in a road tunnel with vertical shafts

Abstract

Abstract A series of fire experiments using 1:10 and 1:20 scale model tunnels with a number of vertical shafts was conducted to investigate the effects of the scale ratio and the aspect ratio of the model tunnels on the longitudinal smoke-temperature distribution and the performance of a natural ventilation system. These model tunnels had different aspect ratios of the tunnel cross section: the aspect ratios of the 1:10 and 1:20 scale model tunnels were unity and two, respectively. Furthermore, a new model for predicting the longitudinal smoke-temperature distribution during the one-dimensional smoke spreading stage was developed. Then, the temperature distribution predicted by the model was compared with that obtained by the fire experiments to evaluate the model. In this model, the heat transfer from the smoke to the tunnel walls was considered, but the thermal radiation exchange between the smoke and surroundings was not considered, because the temperature difference between the smoke and surroundings was small and the influence of the radiation could be neglected. The key findings obtained were: (1) Two forms of the smoke exhausted from shafts (plug-holing and boundary layer separation) can be classified by the Richardson number, and the critical Richardson number 1.4 (for transitioning from one form to other) was confirmed in this study as proposed by Ji et al (Int. J. Heat Mass Transf., 55, 6032–6041). (2) The efficiency of exhausting heat of the smoke could be estimated from the tunnel geometry, shaft height, and Richardson number. It was shown that the value of the efficiency depends on the aspect ratio of the model tunnel. (3) The developed model was able to predict the longitudinal smoke-temperature distribution under the conditions with and without shafts regardless of the scale ratio of the model tunnel and the aspect ratio of the tunnel cross section.

Country
Australia
Related Organizations
Keywords

0102 Applied Mathematics, tunnel fire, boundary layer separation, 0904 Chemical Engineering, Institute for Sustainability and Innovation (ISI), 624, vertical shaft, 620

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!