
PurposeThe spatial and non-spatial attributes are the two important characteristics of a spatial point, which belong to the two different attribute domains in many Geographic Information Systems applications. The dual clustering algorithms take into account both spatial and non-spatial attributes, where a cluster has not only high proximity in spatial domain but also high similarity in non-spatial domain. In a geographical dataset, traditional dual spatial clustering algorithms discover homogeneous spatially adjacent clusters suffering from the between-cluster inhomogeneity where those spatial points are described in non-spatial domain. To overcome this limitation, a novel dual-domain clustering algorithm (DDCA) is proposed by considering both spatial proximity and attribute similarity with the presence of inhomogeneity.Design/methodology/approachIn this algorithm, Delaunay triangulation with edge length constraints is first employed to construct spatial proximity relationships amongst objects. Then, a clustering strategy based on statistical change detection is designed to obtain clusters with similar attributes.FindingsThe effectiveness and practicability of the proposed algorithm are illustrated by experiments on both simulated datasets and real spatial events. It is found that the proposed algorithm can adaptively and accurately detect clusters with spatial proximity and similar non-spatial attributes under the consideration of inhomogeneity.Originality/valueTraditional dual spatial clustering algorithms discover homogeneous spatially adjacent clusters suffering from the between-cluster inhomogeneity where those spatial points are described in non-spatial domain. The research here is a contribution to developing a dual spatial clustering method considering both spatial proximity and attribute similarity with the presence of inhomogeneity. The detection of these clusters is useful to understand the local patterns of geographical phenomena, such as land use classification, spatial patterns research and big geo-data analysis.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
