Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Statistics in Medici...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Statistics in Medicine
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
HKU Scholars Hub
Article . 2012
Data sources: HKU Scholars Hub
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A multiple imputation approach for clustered interval‐censored survival data

Authors: Lam, KF; Xu, Y; Cheung, TL;

A multiple imputation approach for clustered interval‐censored survival data

Abstract

AbstractMultivariate interval‐censored failure time data arise commonly in many studies of epidemiology and biomedicine. Analysis of these type of data is more challenging than the right‐censored data. We propose a simple multiple imputation strategy to recover the order of occurrences based on the interval‐censored event times using a conditional predictive distribution function derived from a parametric gamma random effects model. By imputing the interval‐censored failure times, the estimation of the regression and dependence parameters in the context of a gamma frailty proportional hazards model using the well‐developed EM algorithm is made possible. A robust estimator for the covariance matrix is suggested to adjust for the possible misspecification of the parametric baseline hazard function. The finite sample properties of the proposed method are investigated via simulation. The performance of the proposed method is highly satisfactory, whereas the computation burden is minimal. The proposed method is also applied to the diabetic retinopathy study (DRS) data for illustration purpose and the estimates are compared with those based on other existing methods for bivariate grouped survival data. Copyright © 2010 John Wiley & Sons, Ltd.

Related Organizations
Keywords

Biomedical Research, Diabetic Retinopathy, Biomedical Research - Statistics & Numerical Data, Cluster Analysis, Humans, 310, Survival Analysis, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!