Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/698_20...
Part of book or chapter of book . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Predicting Water Quality Indicators from Conventional and Nonconventional Water Resources in Algeria Country: Adaptive Neuro-Fuzzy Inference Systems Versus Artificial Neural Networks

Authors: Salim Heddam; Ozgur Kisi; Abderrazek Sebbar; Larbi Houichi; Lakhdar Djemili;

Predicting Water Quality Indicators from Conventional and Nonconventional Water Resources in Algeria Country: Adaptive Neuro-Fuzzy Inference Systems Versus Artificial Neural Networks

Abstract

Monitoring water quality is of great importance and mainly adopted for water pollution control of conventional and nonconventional water resources. Generally, water quality is evaluated using several indicators, including chemical oxygen demand (COD), biochemical oxygen demand (BOD), and dissolved oxygen concentration (DO). In the present investigation, two artificial intelligence techniques, namely, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (ANN), were applied for predicting two water quality indicators: (1) chemical oxygen demand (COD) at Sidi Marouane Wastewater Treatment Plant (WWTP), east of Algeria, and (2) dissolved oxygen concentration (DO) at the drinking water treatment plant of Boudouaou, Algeria. The models were developed and compared based on several water quality variables as inputs. Three ANFIS models, namely, (1) ANFIS with fuzzy c-mean clustering (FCM) algorithm called ANFIS_FC, (2) ANFIS with grid partition (GP) method called ANFIS_GP, and (3) ANFIS with subtractive clustering (SC) called ANFIS_SC, were developed. The ANFIS models were compared to standard multilayer perceptron neural network (MLPNN) and multiple linear regression model (MLR). Results obtained demonstrated that (1) for predicting COD, ANFIS_SC is the best model, and the coefficient of correlation (R), Wilmot’s index (d), root-mean-square error (RMSE), and mean absolute error (MAE) were calculated as 0.805, 0.880, 6.742, and 4.944 mg/L for the validation dataset. The worst results were obtained using the MLR model with R, d, RMSE, and MAE equal to 0.750, 0.840, 0.7658, and 5.916 mg/L for the validation subset, and (2) for predicting DO concentration, the best results were obtained using ANFIS_SC with R, d, RMSE, and MAE equal to 0.856, 0.922, 1.528, and 1.123 mg/L for the validation subset, respectively.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!