
Abstract We present a general treatment of the variational multiscale method in the context of an abstract Dirichlet problem. We show how the exact theory represents a paradigm for subgrid-scale models and a posteriori error estimation. We examine hierarchical p -methods and bubbles in order to understand and, ultimately, approximate the ‘fine-scale Green's function’ which appears in the theory. We review relationships between residual-free bubbles, element Green's functions and stabilized methods. These suggest the applicability of the methodology to physically interesting problems in fluid mechanics, acoustics and electromagnetics.
Multigrid methods; domain decomposition for boundary value problems involving PDEs, Finite element methods applied to problems in solid mechanics, Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs, Spectral and related methods applied to problems in solid mechanics
Multigrid methods; domain decomposition for boundary value problems involving PDEs, Finite element methods applied to problems in solid mechanics, Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs, Spectral and related methods applied to problems in solid mechanics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1K | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
