
handle: 11311/1195467
The paper presents an overview of Baker Hughes digital framework for a predictive maintenance service boosted by Machine Learning and asset knowledge, applied to turbomachinery assets. Optimization of the maintenance scenario is performed through a risk model that assesses online health status and probability of failure, by detecting functional anomalies and aging phenomena and evaluating their impact on asset serviceability. Turbomachinery domain knowledge is used to create physics-based models, to configure a severity assessment layer and to properly map maintenance actions to anomaly types. The implemented analytics framework is able also to forecast engine behaviour over the future in order to optimize asset operation and maintenance, minimizing downtime and residual risk. Predictive capabilities are optimized thanks to the hybrid approach, where physics-based knowledge empowers long term prediction accuracy while data-driven analytics ensure fast-events prognostics. Accuracy of the hybrid approach is a differentiator for maintenance optimization, allowing activities to be planned properly and in early advance with respect to outage execution.
Turbomachinery, Machine learning, Predictive maintenance, Anomaly detection, Monitoring and diagnostics, Digital twin
Turbomachinery, Machine learning, Predictive maintenance, Anomaly detection, Monitoring and diagnostics, Digital twin
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
