
AbstractReal‐time and in‐line transversal monitoring of ionizing radiation beams is a crucial task for several applications which span from medical treatments to particle accelerators in high energy physics. Here a flexible and large area device based on 2D hybrid perovskite thin films (phenylethylammonium lead bromide), fabricated onto a thin flexible polyimide substrate, able to map the transversal beam profile of high energy radiation beams is reported. The performance of this novel tool is here compared with the one offered by standard commercial large‐area technology, namely radiochromic sheets. The great potential of this class of devices is demonstrated by successfully mapping in real‐time a 5 MeV proton beam at fluxes between 108 and 1010 H+ s−1 cm−2, confirming the capability to operate in a radiation‐harsh environment without output signal saturation issues. The versatility and scalability of here proposed detecting system are demonstrated by the development of a multipixel array able to map in real‐time a 40 kVp X‐ray beam spot (dose rate 8 mGy s−1). Perovskite thin film‐based detectors are thus assessed as a very promising class of thin, flexible devices for real‐time, in‐line, large‐area, conformable, reusable, transparent, and low‐cost transversal beam monitoring of different ionizing radiation.
Science, large and flexible radiation detectors, Q, transversal beam monitorin, ionizing radiation direct detectors, 2D hybrid perovskite; ionizing radiation direct detectors; large and flexible radiation detectors; proton detectors; transversal beam monitorin, proton detectors, 2D hybrid perovskite, Research Article
Science, large and flexible radiation detectors, Q, transversal beam monitorin, ionizing radiation direct detectors, 2D hybrid perovskite; ionizing radiation direct detectors; large and flexible radiation detectors; proton detectors; transversal beam monitorin, proton detectors, 2D hybrid perovskite, Research Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
