Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della Ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On Nonlinear Compression Costs: When Shannon Meets Rényi

when Shannon Meets Rényi
Authors: Andrea Somazzi; Paolo Ferragina; Diego Garlaschelli;

On Nonlinear Compression Costs: When Shannon Meets Rényi

Abstract

Shannon entropy is the shortest average codeword length a lossless compressor can achieve by encoding i.i.d. symbols. However, there are cases in which the objective is to minimize the \textit{exponential} average codeword length, i.e. when the cost of encoding/decoding scales exponentially with the length of codewords. The optimum is reached by all strategies that map each symbol $x_i$ generated with probability $p_i$ into a codeword of length $\ell^{(q)}_D(i)=-\log_D\frac{p_i^q}{\sum_{j=1}^Np_j^q}$. This leads to the minimum exponential average codeword length, which equals the Rényi, rather than Shannon, entropy of the source distribution. We generalize the established Arithmetic Coding (AC) compressor to this framework. We analytically show that our generalized algorithm provides an exponential average length which is arbitrarily close to the Rényi entropy, if the symbols to encode are i.i.d.. We then apply our algorithm to both simulated (i.i.d. generated) and real (a piece of Wikipedia text) datasets. While, as expected, we find that the application to i.i.d. data confirms our analytical results, we also find that, when applied to the real dataset (composed by highly correlated symbols), our algorithm is still able to significantly reduce the exponential average codeword length with respect to the classical `Shannonian' one. Moreover, we provide another justification of the use of the exponential average: namely, we show that by minimizing the exponential average length it is possible to minimize the probability that codewords exceed a certain threshold length. This relation relies on the connection between the exponential average and the cumulant generating function of the source distribution, which is in turn related to the probability of large deviations. We test and confirm our results again on both simulated and real datasets.

22 pages, 9 figures

Countries
Italy, Netherlands, Italy
Keywords

FOS: Computer and information sciences, E.4; H.1.1, Computer Science - Information Theory, Information Theory (cs.IT), E.4, FOS: Physical sciences, Arithmetic; Arithmetic coding; Campbell theorem; Channel coding; Codes; Costs; Data compression; Entropy; Europe; Large deviations; Rényi entropy; Symbols, Symbols; Channel coding; Entropy; Costs; Arithmetic; Europe; Data compression; Codes; Arithmetic coding; Campbell theorem; large deviations; R & eacute;nyi entropy, 68P30, 94A29, 94A17, Physics - Data Analysis, Statistics and Probability, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Data Analysis, Statistics and Probability (physics.data-an), H.1.1

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold
Beta
sdg_colorsSDGs:
Related to Research communities
EGI : advanced computing for research