Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2017 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Research on gasification of low-grade fuels in a continuous layer

Authors: Mysak, Joseph; Lys, Stepan; Martynyak-Andrushko, Marta;

Research on gasification of low-grade fuels in a continuous layer

Abstract

The technology of thermal processing of low-grade fuel into gaseous fuel is an essential problem whose solution will create clean energy as an alternative to natural gas and coal gasification. It also can solve the problems of the ecological utilization of industrial and household waste as well as of obtaining cheap energy and improving industrial effects for the environment. The analysis of the theoretical provisions and experimental tests has proved the possibility of processing wood during its gasification in a gas generator with a continuous layer; it is processed into gaseous fuel with the lower calorific value being 1.5 times higher in comparison with the calorific value of the gaseous fuel that is produced by other known gas generators of this type. The experimental results have specified the regression dependence of heat that is produced by burning the synthesis gas during the gasification of low-grade fuel on the fractional composition of the fuel, the amount of air, and the fuel layer height. The resulting regression equations can be the basis for implementing the studied process and its rational management. The equations of the input factors’ dependence on the original setting make it possible to determine every possible parameter of assessing the process under study at any value of the factors between the upper and lower levels. The tests have revealed the rational values of the input parameters for operating a gas generator with a continuous layer at which the lower heating value of burning the syngas reaches its maximum.

Related Organizations
Keywords

UDC 674.8:662.765.1, нижча теплота згорання; синтез-газ; газифікації низькосортних палив; регресійні залежності, LHV (LCV or NCV); synthesis gas (syngas); gasification of low-grade fuels; regression dependence, низшая теплота сгорания; синтез-газ; газификации низкосортных топлив; регрессионные зависимости

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
gold