
Machine learning techniques have been applied to the task of student modeling, more so in building tutors for acquiring programming skill. These were developed for various languages (Pascal, Prolog, Lisp, C++) and programming paradigms (procedural and declarative) but never for object-oriented programming in Java. JavaBugs builds a bug library automatically using discrepancies between a student and correct program. While other works analyze code snippets or UML diagrams to infer student knowledge of object-oriented design and programming, JavaBugs examines a complete Java program and identifies the most similar correct program to the student's solution among a collection of correct solutions and builds trees of misconceptions using similarity measures and background knowledge. Experiments show that JavaBugs can detect the most similar correct program 97% of the time, and discover and detect 61.4% of student misconceptions identified by the expert.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
