Downloads provided by UsageCounts
Abstract The paper presents a comparison of the two languages Python and R related to the classification tools and demonstrates the differences in their syntax and graphical output. It indicates the functionality of R and Python packages {dendextend} and scipy.cluster as effective tools for the dendrogram modelling by the algorithms of sorting and ranking datasets. R and Python programming languages have been tested on a sample dataset including marine geological measurements. The work aims to detect how bathymetric data change along the 25 bathymetric profiles digitized across the Mariana Trench. The methodology includes performed hierarchical cluster analysis with dendrograms and plotted clustermap with marginal dendrograms. The statistical libraries include Matplotlib, SciPy, NumPy, Pandas by Python and {dendextend}, {pvclust}, {magrittr} by R. The dendrograms were compared by the model-simulated clusters of the bathymetric ranges. The results show three distinct groups of the profiles sorted by the elevation ranges with maximal depths detected in a group of profiles 19-21. The dendrogram visualization in a cluster analysis demonstrates the effective representation of the data sorting, grouping and classifying by the machine learning algorithms. The programming codes presented in this study enable to sort a dataset in a similar research aimed to group data based on the similarity of attributes. Effective visualization by dendrograms is a useful modelling tool for the geospatial management where data ranking is required. Plotting dendrograms by R, comparing to Python, presented functional and sophisticated algorithms, refined design control and fine graphical data output. The interdisciplinary nature of this work consists in application of the coding algorithms for spatial data analysis.
Logique mathématique, data analysis, Modèles mathématiques d'aide à la décision, programming language, Sciences de l'ingénieur, data ranking, Disciplines graphiques, Informatique mathématique, data sorting, Datensortierung, Programmiersprache, clustering, data analysis, data sorting, data ranking, dendrogram, R, Python, machine learning, programming language, Datenranking, Géodésie, Cartographie, Dendrogramm, dendrogram, R, Méthodes mathématiques et quantitatives, maschinelles Lernen, Programmation et méthodes de simulation, Méthodologie de la recherche scientifique, Sémantique des langages de programmation, Sciences de la terre et du cosmos, Clusterbildung, Datenanalyse, machine learning, Analyse mathématique, Programmation du calcul numérique, Sciences exactes et naturelles, Python, clustering
Logique mathématique, data analysis, Modèles mathématiques d'aide à la décision, programming language, Sciences de l'ingénieur, data ranking, Disciplines graphiques, Informatique mathématique, data sorting, Datensortierung, Programmiersprache, clustering, data analysis, data sorting, data ranking, dendrogram, R, Python, machine learning, programming language, Datenranking, Géodésie, Cartographie, Dendrogramm, dendrogram, R, Méthodes mathématiques et quantitatives, maschinelles Lernen, Programmation et méthodes de simulation, Méthodologie de la recherche scientifique, Sémantique des langages de programmation, Sciences de la terre et du cosmos, Clusterbildung, Datenanalyse, machine learning, Analyse mathématique, Programmation du calcul numérique, Sciences exactes et naturelles, Python, clustering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 4 | |
| downloads | 4 |

Views provided by UsageCounts
Downloads provided by UsageCounts