
In theory, the variational auto-encoder (VAE) is not suitable for recommendation tasks, although it has been successfully utilized for collaborative filtering (CF) models. In this paper, we propose a Gaussian Copula-Vector Quantized Autoencoder (GC-VQAE) model that differs prior arts in two key ways: (1) Gaussian Copula helps to model the dependencies among latent variables which are used to construct a more complex distribution compared with the mean-field theory; and (2) by incorporating a vector quantisation method into encoders our model can learn discrete representations which are consistent with the observed data rather than directly sampling from the simple Gaussian distributions. Our approach is able to circumvent the "posterior collapse'' issue and break the prior constraint to improve the flexibility of latent vector encoding and learning ability. Empirically, GC-VQAE can significantly improve the recommendation performance compared to existing state-of-the-art methods.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
