Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-objective Genetic Algorithm Optimization of HVAC Operation: Integrating Energy Consumption, Thermal Comfort, and Productivity

Authors: Sokratis Papadopoulos; Elie Azar;

Multi-objective Genetic Algorithm Optimization of HVAC Operation: Integrating Energy Consumption, Thermal Comfort, and Productivity

Abstract

An important share of the energy demand of buildings is attributed to the heating, ventilation, and air conditioning (HVAC) systems. Simple changes in the operational settings of these systems, such as adjusting the thermostat setpoint temperatures, can have a significant impact on building performance (e.g., energy consumption and costs). In parallel, changes in indoor environmental conditions can directly impact occupants’ comfort, wellbeing, and productivity. A review of the literature indicates that the stated metrics of building performance are often studied in isolation, failing to capture their cross-effects and potential implications for building operation strategies. This chapter presents a genetic algorithm (GA) multi-objective optimization (MOO) that captures the trade-offs between—and optimizes—three competing objectives of building performance: (i) energy consumption, (ii) thermal comfort, and (iii) productivity. Using building performance simulation (BPS), models of three archetype office buildings located in different climate zones are used to showcase and validate the framework’s capabilities. Optimal HVAC setpoint settings are found to reduce energy consumption by up to 25.8% while maintaining acceptable comfort and productivity levels of occupants. Additionally, the non-dominated solutions for buildings located in different weather zone vary statistically, motivating the need for climate-sensitive HVAC operation strategies and standards.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!