Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Lightweight Optimal Scheduling Algorithm for Energy-Efficient and Real-Time Cloud Services

Authors: Joohyung Sun; Hyeonjoong Cho;

A Lightweight Optimal Scheduling Algorithm for Energy-Efficient and Real-Time Cloud Services

Abstract

To support ever-chainging user needs such as large storage volumes, web search, and high-performance computing, numerous companies have expanded their systems to cloud computing servers. Cloud environment systems generally consume large amounts of electrical power, leading to tremendously high operational costs. In addition, they require computing infrastructures to run various real-time applications such as financial analysis, cloud gaming, and web-based real-time services. To represent performance guarantees, the negotiated agreements in real-time computing, expressed as deadline (or latency), can be specified by service level agreements of cloud services between users and cloud server providers. Thus, a number of research works have started focusing on reducing the energy consumption and simultaneously satisfying the temporal constraint in a cloud environment. Although we previously proposed an optimal real-time scheduling algorithm for multiprocessors, it is difficult to use it for cloud environments handling a large number of cloud services because of the high computational complexity of $\Omega (N^{3}logN)$ , where $N$ is the number of tasks. Thus, we introduce a real-time task scheduling algorithm for cloud computing servers, which alleviates the computational complexity of $O(N^{2})$ from the complexity of the previous algorithm using a novel flow network-based optimization method. To the best of our knowledge, our scheduling algorithm in a cloud environment, which ensures optimality for real-time tasks and achieves energy savings using dynamic power management simultaneously, is the first in the problem domain. We show that the proposed scheduling algorithm guarantees an optimal schedule for real-time tasks and achieves energy savings simultaneously. Our experimental results show that the proposed algorithm outperforms the latest existing algorithms in terms of both time complexity and energy efficiency.

Related Organizations
Keywords

energy-aware algorithm, real-time computing, flow network problem, optimal scheduling, Cloud computing, Electrical engineering. Electronics. Nuclear engineering, dynamic power management, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold