Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mechanical Systems a...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanical Systems and Signal Processing
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Joint parameter-input estimation for virtual sensing on an offshore platform using output-only measurements

Authors: Song, Mingming; Christensen, Silas Sverre; Moaveni, Babak; Brandt, Anders; Hines, Erik;

Joint parameter-input estimation for virtual sensing on an offshore platform using output-only measurements

Abstract

This paper presents a recursive Bayesian inference framework for joint parameter-input identification, and virtual sensing for strain time history prediction of an offshore platform using sparse output-only measurements. The studied offshore platform, known as FINO3, is in the North Sea and is instrumented with a variety of sensors, including accelerometers and strain gauges. Offshore platforms are fatigue critical structures due to harsh marine environmental conditions and continuous cyclic wind and wave loads. Therefore, continuous monitoring of strain time histories at hotspot locations of offshore structures is important for reducing maintenance cost and avoiding unexpected failures. A windowed unscented Kalman filter (UKF) is employed to estimate an uncertain modeling parameter (foundation stiffness) and unknown input load time histories using output-only acceleration and strain measurements. The input loads are divided into overlapping windows, and windowed inputs and model parameters are combined as an augmented state vector in the UKF framework. Then strain time histories at critical locations are estimated through a virtual sensing strategy using the estimated input loads and model parameter. A traditional modal expansion approach combined with model updating is also implemented for the purpose of verification and comparison. The proposed method is first demonstrated through a numerical study using a finite element model of FINO3, where accurate model parameter and input estimations are obtained. Then the approach is further investigated using the actual measurements on FINO3. More accurate strain predictions are provided by the UKF than the modal expansion approach, which recommends the proposed UKF method for fatigue monitoring and input estimation.

Country
Denmark
Related Organizations
Keywords

Virtual sensing, Structural health monitoring, Offshore platform, Input estimation, Recursive Bayesian inference

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!