Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Електротехніка і Еле...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Електротехніка і Електромеханіка
Article . 2024 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Smart current control of the wind energy conversion system based permanent magnet synchronous generator using predictive and hysteresis model

Authors: H. K. E. Zine; K. Abed;

Smart current control of the wind energy conversion system based permanent magnet synchronous generator using predictive and hysteresis model

Abstract

Introduction. Given the increasing demand for performance and efficiency of converters and power drives, the development of new control systems must take into account the real nature of these types of systems. Converters and dimmers power are nonlinear systems of a hybrid nature, including elements linear and nonlinear and a finite number of switching devices. Signals input for power converters are discrete signals that control the ‘opening and closing’ transitions of each component. Problem. In the multilevel inverters connected to grid, the switching frequency is the principal cause of harmonics and switching losses, which by nature, reduces the inverter’s efficiency. Purpose. For guarantee the satisfying quality of power transmitted to the electrical grid, while ensuring reduction of current ripples and output voltage harmonics. Novelty. This work proposes a new smart control, based on a predictive current control of the three level neutral point clamped inverter, used in Wind Energy Conversion System (WECS) connected to grid, based permanent magnet synchronous generator, powered by a hysteresis current control for the rectifier. This new formula guarantees handling with the influence of harmonics disturbances (similar current total harmonic distortion), voltage stress, switching losses, rise time, over or undershoot and settling time in WECS. Methods. The basic idea of this control is to choose the best switching state, of the power switches, which ameliorates the quality function, selected from order predictive current control of WECS. Results. Practical value. Several advantages in this intelligent method, such as the fast dynamic answer, the easy implementation of nonlinearities and it requires fewer calculations to choose the best switching state. In addition, an innovative algorithm is proposed to adjust the current ripples and output voltage harmonics of the WECS. The performances of the system were analyzed by simulation using MATLAB/Simulink.

Related Organizations
Keywords

wind energy conversion system, hysteresis current control, permanent magnet synchronous generator, three level neutral point clamped inverter, інвертор з трирівневим фіксуванням нейтральної точки, управління струмом з гістерезисом, прогностичне управління струмом, синхронний генератор з постійними магнітами, Electrical engineering. Electronics. Nuclear engineering, система перетворення енергії вітру, predictive current control, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold
Related to Research communities