Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Журнал Сибирского фе...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fabrication and Degradation of Electrospun Polyhydroxyalkanoate Film

Authors: Joyyi, Lee; Sridewi, Nanthini; Abdullah, Amirul Al-Ashraf; Kasuya, Ken-ichi; Sudesh, Kumar;

Fabrication and Degradation of Electrospun Polyhydroxyalkanoate Film

Abstract

Polyhydroxyalkanoates (PHAs) are a family of biopolymers with good biodegradability. Poly(3- hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-25 mol % 4-hydroxybutyrate) [P(3HBco- 25 mol % 4HB)] and poly(3-hydroxybutyrate-co-75 mol % 4-hydroxybutyrate) [P(3HB-co-75 mol % 4HB)] were fabricated using the electrospinning technique to obtain fibers. Electrospun P(3HB) showed formation of fibers when 30 kV voltage was applied to 4 % P(3HB) extruded at 60 μL/min with prior heating for 15 min at 60 °C. Fabricated P(3HB-co-4HB) showed a continuous polymer mat with embedded beads formation. P(3HB) fabricated at different time of electrospinning (5, 10, 15 and 20 min) and concentrations (1 %, 2 %, 3 % and 4 %) subjected to in vitro enzymatic degradation by PHA depolymerase showed decrease in polymer weight. The highest rate of degradation was exhibited by 2 % P(3HB) electrospun for 15 min. Films of 1 % P(3HB-co-25 mol % 4HB) and 1 % P(3HBco- 75 mol % 4HB) subjected to in vitro lipase degradation also exhibited decrease in polymer weight. P(3HB-co-75 mol % 4HB) films showed significant decrease in weight compared to P(3HB-co-25 mol % 4HB). Degraded P(3HB) had fibril-like structures whereas P(3HB-co-4HB) surface structure became more porous. Environmental degradation of these polymers was successful with P(3HB-co- 4HB) being better degraded

Keywords

полигидроксиалканоаты, электростатическое формование, QH301-705.5, polyhydroxyalkanoates, biopolymers, in vitro, деградация, биополимеры, Biology (General), electrospinning, TP248.13-248.65, degradation, Biotechnology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold