
A recent paper by \textit{J. S. Bramley} and \textit{D. M. Sloan} [Comput. Fluids 15, 297-311 (1987; Zbl 0626.76040)] describes a numerical solution for two-dimensional flow of a viscous, incompressible fluid in a branching channel. A grid generation algorithm was used to map the solution region onto a rectangle and an upwind finite difference scheme was then used to solve the Navier-Stokes equations in terms of stream function and vorticity. Here we extend the earlier work by describing an efficient solution of the problem using a nonlinear multigrid algorithm. Of particular interest is the treatment of the boundary conditions in a manner which does not destroy the interior smoothness in the neighbourhood of the boundary.
numerical solution, two-dimensional flow, grid generation algorithm, upwind finite difference scheme, Basic methods in fluid mechanics, nonlinear multigrid algorithm, Boundary-layer theory, separation and reattachment, higher-order effects, Navier-Stokes equations, branching channel, viscous, incompressible fluid
numerical solution, two-dimensional flow, grid generation algorithm, upwind finite difference scheme, Basic methods in fluid mechanics, nonlinear multigrid algorithm, Boundary-layer theory, separation and reattachment, higher-order effects, Navier-Stokes equations, branching channel, viscous, incompressible fluid
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
