Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/jiot.2...
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY NC ND
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamic RAT Selection and Transceiver Optimization for Mobile-Edge Computing Over Multi-RAT Heterogeneous Networks

Authors: Feng Wang; Vincent K. N. Lau;

Dynamic RAT Selection and Transceiver Optimization for Mobile-Edge Computing Over Multi-RAT Heterogeneous Networks

Abstract

Mobile edge computing (MEC) integrated with multiple radio access technologies (RATs) is a promising technique for satisfying the growing low-latency computation demand of emerging intelligent internet of things (IoT) applications. Under the distributed MapReduce framework, this paper investigates the joint RAT selection and transceiver design for over-the-air (OTA) aggregation of intermediate values (IVAs) in wireless multiuser MEC systems, while taking into account the energy budget constraint for the local computing and IVA transmission per wireless device (WD). We aim to minimize the weighted sum of the computation mean squared error (MSE) of the aggregated IVA at the RAT receivers, the WDs' IVA transmission cost, and the associated transmission time delay, which is a mixed-integer and non-convex problem. Based on the Lagrange duality method and primal decomposition, we develop a low-complexity algorithm by solving the WDs' RAT selection problem, the WDs' transmit coefficients optimization problem, and the aggregation beamforming problem. Extensive numerical results are provided to demonstrate the effectiveness and merit of our proposed algorithm as compared with other existing schemes.

14 pages, 12 figures, double-column, and submitted for publication

Related Organizations
Keywords

Transceivers, Signal Processing (eess.SP), FOS: Computer and information sciences, Radio access technologies, Computer Science - Information Theory, Information Theory (cs.IT), Wireless communication, Servers, Mobile edge computing (MEC), Over-the-air (OTA) aggregation, Nomographic function, Transceiver optimization., 5G mobile communication, Task analysis, FOS: Electrical engineering, electronic engineering, information engineering, MapReduce framework, Multi-RAT selection, Wireless fidelity, Electrical Engineering and Systems Science - Signal Processing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green