Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2017 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Examining the epoxidation process of soybean oil by peracetic acid

Authors: Nykulyshyn, Irena; Pikh, Zorian; Shevchuk, Liliya; Melnyk, Stepan;

Examining the epoxidation process of soybean oil by peracetic acid

Abstract

The main principle of green chemistry is the use of renewable, ecological raw materials, which will contribute to subsequent biodegradation and reduction of toxicity of the product in the production of polymers. Vegetable oil (VO) is the cheapest and most common biological raw material, the use of which has such advantages as low toxicity and natural biodegradation. We analyzed experimental dependences of the consumption of reagents and the accumulation of epoxide in the interaction between a solution of soybean oil (SO) in toluene and the epoxidizing systems H 2 O 2 /acetic acid (AA)/KU-2´8 and H 2 O 2 /acetic anhydride (AAn)/KU-2´8. It was established that the use in the process of epoxidation of soybean oil of the specified systems makes it possible to achieve high values of selectivity of epoxidation by double bonds. The resulting values of selectivities in the epoxidation process by double bonds and by the consumption of peroxide when studying the epoxidizing system Н 2 О 2 /AAn/KU-2´8 are higher. The advantages of using the specified epoxidizing system include a reduction in the total volume and mass of the reaction mixture. Obtaining the epoxidized soybean oil with a low resulting value of bromine number provides subsequent good thermal and oxidative stability of materials on its base. We calculated the values of rate constants of the epoxidation reaction of SO at different temperatures. By using the methods of IR and Raman spectroscopic studies, we demonstrated structural changes in raw materials and confirmed the progress of the epoxidation reaction. The developed technique for recalculating the values of bromine, iodine numbers of products of the epoxidation reaction, unsaturation and epoxy number, selectivity of the process in the epoxidation of mixtures of unsaturated compounds allows comparing the results of research. The use of the specified technique also makes it possible to draw unambiguous comparative conclusions about the effectiveness of reagents consumption and the selectivity of reaction. In this case, there is a possibility to improve the technology of obtaining the epoxidized compounds. The calculation formulas obtained were applied to analyze the progress of the epoxidation process of soybean oil.

Related Organizations
Keywords

UDC 66.094.3:574.729, эпоксидированные растительные масла; содержание оксиранового кислорода; эпоксидное число; кинетические исследования; ИЧ-спектроскопия; Раман-спектроскопия, : епоксидовані рослинні олії; вміст оксиранового кисню; епоксидне число; кінетичні дослідження; ІЧ-спектроскопія; Раман-спектроскопія, epoxidized vegetable oils; oxirane oxygen content; epoxy number; kinetic studies; IR spectroscopy; Raman spectroscopy

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold