Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/mobile...
Article . 2020 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Game Theoretic Algorithm for Energy Efficient Mobile Edge Computing with Multiple Access Points

Authors: Tobias Mahn; Maximilian Wirth; Anja Klein;

Game Theoretic Algorithm for Energy Efficient Mobile Edge Computing with Multiple Access Points

Abstract

This paper considers a Mobile Edge Computing scenario with multiple mobile units (MUs), multiple access points (APs) and one cloudlet server. The MUs have to decide whether offloading their computation tasks to the cloudlet is energy wise beneficial. As there are multiple APs available to connect the MUs to the cloudlet and communication and computation resources have to be shared among all MUs, each MU also has to choose the AP for transmission that minimizes its offloading energy under the given fraction of the overall resources. The problem is formulated as a energy minimization problem with a maximum offloading time constraint. MUs not only need to consider the energy required for local computation or offloading, but simultaneously avoid an overlong processing time of offloaded computation. This joint offloading decision and resource allocation is divided into two subproblems in the proposed approach. The resource allocation problem is reformulated by using Lagrange multipliers and closed-forms for the calculation of the shared resources are found. These results can be integrated into the proposed game theoretic algorithm for the offloading decision problem. The algorithm is based on a potential game and therefore, can be proven to converge to a Nash equilibrium. Numerical results show a benefit of the proposed resource allocation strategy, a performance of the proposed game algorithm near the optimal solution and a fast algorithm execution time that can even be significantly improved by proposed sorting metrics. mobile edge computing, joint optimization, resource allocation strategy, game theory

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!