Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Open Journal of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Open Journal of the Communications Society
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Open Journal of the Communications Society
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy-Efficient MU-Massive-MIMO Hybrid Precoder Design: Low-Resolution Phase Shifters and Digital-to-Analog Converters for 2D Antenna Array Structures

Authors: Mobeen Mahmood; Asil Koc; Tho Le-Ngoc;

Energy-Efficient MU-Massive-MIMO Hybrid Precoder Design: Low-Resolution Phase Shifters and Digital-to-Analog Converters for 2D Antenna Array Structures

Abstract

This paper investigates a multi-user massive multiple-input multiple-output (MU-mMIMO) hybrid precoding (HP) scheme using low-resolution phase shifters (PSs) and digital-to-analog converters (DACs). The proposed HP approach involves two stages: RF beamforming based on the slowly time-varying channel second-order correlation matrix, and baseband MU precoding based on the instantaneous effective baseband channel to mitigate MU-interference by a regularized zero-forcing (RZF) technique. We consider three HP design architectures: (i) HP using full-resolution PSs and DACs, with a baseband transfer block for constant-modulus RF beamformer, (ii) HP using $b$ -bit PSs and full-resolution DACs, with an orthogonal matching pursuit (OMP) based algorithm that can approach the optimal unconstrained RF beamformer, and (iii) HP using $b$ -bit PSs and $q$ -bit DACs, taking into account also DAC quantization noise. Illustrative results show that the proposed HP schemes with low-resolution PSs can approach the sum-rate of full-resolution PSs by using only 2-bit PSs, while offering higher energy efficiency. Furthermore, a study of sum-rate results for various PS and DAC quantization levels reveals that HP can achieve near-optimal performance with only 2-bit PSs and 5-bit DACs. Moreover, a comparison of the different array configurations, namely, uniform linear array (ULA), uniform circular array (UCA), uniform rectangular array (URA), and concentric circular array (CCA), indicates that URA and CCA outperform UCA and ULA in terms of spectral and energy efficiencies.

Related Organizations
Keywords

uniform linear array (ULA), low-resolution digital-to-analog converters (DACs), low-resolution phase shifters (PSs), Massive multiple-input multiple-output (mMIMO), hybrid precoding, Telecommunication, TK5101-6720, Transportation and communications, energy efficiency, HE1-9990

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
gold