
Summary: Some coefficient inverse problems of electromagnetic frequency sounding of inhomogeneous media are considered. Such problems occur in many areas of applied physics, such as the geophysical exploration of gas, oil and mineral deposits, reservoir monitoring, marine acoustics and electromagnetics, optical sensing, and radio physics. Reformulating these problems in terms of nonlinear least squares, also known in the applied literature as matched field processing, often leads to a multiextremal and multidimensional objective function. This makes it extremely difficult to find its global extremum which corresponds to the solution of the original problem. It is shown in this paper that an inverse problem of frequency sounding can first be identically transformed to a certain boundary value problem which does not explicitly contain an unknown coefficient. The nonlinear least squares are then applied to the transformed problem. Using the weight functions associated with the Carleman estimates for the Laplace operator, an objective function is constructed in such a way that it is strictly convex on a certain compact set. The feasibility of the proposed approach is demonstrated in computational experiments with a model problem of magnetotelluric frequency sounding of layered media.
Inverse problems for PDEs, coefficient inverse problems, Maxwell's equations, objective function, Carleman estimates for the Laplace operator, magnetotelluric frequency sounding, nonlinear least squares, Optimization problems in optics and electromagnetic theory, PDEs in connection with optics and electromagnetic theory
Inverse problems for PDEs, coefficient inverse problems, Maxwell's equations, objective function, Carleman estimates for the Laplace operator, magnetotelluric frequency sounding, nonlinear least squares, Optimization problems in optics and electromagnetic theory, PDEs in connection with optics and electromagnetic theory
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
