Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nonlinear Dynamicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nonlinear Dynamics
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nonlinear Dynamics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2020
License: CC BY NC ND
Data sources: Datacite
Nonlinear Dynamics
Article . 2022
License: CC BY
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Localized stationary seismic waves predicted using a nonlinear gradient elasticity model

Authors: Leo Dostal; Marten Hollm; Andrei V. Metrikine; Apostolos Tsouvalas; Karel N. van Dalen;

Localized stationary seismic waves predicted using a nonlinear gradient elasticity model

Abstract

AbstractThis paper aims at investigating the existence of localized stationary waves in the shallow subsurface whose constitutive behavior is governed by the hyperbolic model, implying non-polynomial nonlinearity and strain-dependent shear modulus. To this end, we derive a novel equation of motion for a nonlinear gradient elasticity model, where the higher-order gradient terms capture the effect of small-scale soil heterogeneity/micro-structure. We also present a novel finite-difference scheme to solve the nonlinear equation of motion in space and time. Simulations of the propagation of arbitrary initial pulses clearly reveal the influence of the nonlinearity: strain-dependent speed in general and, as a result, sharpening of the pulses. Stationary solutions of the equation of motion are obtained by introducing the moving reference frame together with the stationarity assumption. Periodic (with and without a descending trend) as well as localized stationary waves are found by analyzing the obtained ordinary differential equation in the phase portrait and integrating it along the different trajectories. The localized stationary wave is in fact a kink wave and is obtained by integration along a homoclinic orbit. In general, the closer the trajectory lies to a homoclinic orbit, the sharper the edges of the corresponding periodic stationary wave and the larger its period. Finally, we find that the kink wave is in fact not a true soliton as the original shapes of two colliding kink waves are not recovered after interaction. However, it may have high amplitude and reach the surface depending on the damping mechanisms (which have not been considered). Therefore, seismic site response analyses should not a priori exclude the presence of such localized stationary waves.

Country
Germany
Keywords

Homoclinic orbit, Physics - Geophysics, Nonlinear gradient elasticity model, Stationary waves, Wave interaction, Localized kink wave, FOS: Physical sciences, 535, Geophysics (physics.geo-ph)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 26
    download downloads 14
  • 26
    views
    14
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
3
Average
Average
Average
26
14
Green
hybrid