Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuzzy Sets and Syste...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuzzy Sets and Systems
Article . 1998 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The application of fuzzy logic in automatic modelling of electromechanical systems

Authors: P.J. Costa Branco; J.A. Dente;

The application of fuzzy logic in automatic modelling of electromechanical systems

Abstract

Abstract Electromechanical systems are usually modelled using energy conversion theory. However, this representation is not accurate enough. The reasons are the presence of non-linear relations between the variables, changes in system parameters, and the difficulty encountered sometimes in taking into account, in a simple and precise way, physical phenomena like, friction, viscosity, and saturation. So, it is useful to automatically extract the relations that represent the system behaviour. We investigate in this paper three fuzzy learning algorithms which represent the development of our study and are used for automatic modelling of electromechanical systems. We begin with a very simple algorithm. Some problems are pointed as containing the requisites to be a good model; next, two methods which are composed of a fuzzy-cluster-based algorithm and a fuzzy-supervised-learning algorithm are employed. We explore their learning capabilities in situations like modelling in a direct and inverse way, the amount of information necessary to build a good model, and the problem of selecting the information relevant to the learning process. The algorithms are analysed in an experimental system in our laboratory. We close with a simple control application for the relationship between fuzzy modelling and electromechanical systems designing a feedforward learning controller for the experimental system.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!