
The bulk synchronous parallel (BSP) model, as well as parallel programming interfaces based on BSP, classically target distributed-memory parallel architectures. In earlier work, Yzelman and Bisseling designed a MulticoreBSP for Java library specifically for shared-memory architectures. In the present article, we further investigate this concept and introduce the new high-performance MulticoreBSP for C library. Among other features, this library supports nested BSP runs. We show that existing BSP software performs well regardless whether it runs on distributedmemory or shared-memory architectures, and show that applications in MulticoreBSP can attain high-performance results. The paper details implementing the Fast Fourier Transform and the sparse matrix-vector multiplication in BSP, both of which outperform state-of-the-art implementations written in other shared-memory parallel programming interfaces. We furthermore study the applicability of BSP when working on highly non-uniform memory access architectures.
Shared-memory parallel programming, Sparse matrix-vector multiplication, Theoretical Computer Science, Bulk synchronous parallel, Fast Fourier transform, Software library, Taverne, High-performance computing, Software, Information Systems
Shared-memory parallel programming, Sparse matrix-vector multiplication, Theoretical Computer Science, Bulk synchronous parallel, Fast Fourier transform, Software library, Taverne, High-performance computing, Software, Information Systems
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
