
Abstract This paper addresses the monitoring of logic-independent linear-time user-provided properties in multi-threaded component-based systems. We consider intrinsically independent components that can be executed concurrently with a centralized coordination for multiparty interactions. In this context, the problem that arises is that a global state of the system is not available to the monitor. A naive solution to this problem would be to plug in a monitor which would force the system to synchronize in order to obtain the sequence of global states at runtime. Such a solution would defeat the whole purpose of having concurrent components. Instead, we reconstruct on-the-fly the global states by accumulating the partial states traversed by the system at runtime. We define transformations of components that preserve their semantics and concurrency and, at the same time, allow to monitor global-state properties. Moreover, we present RVMT-BIP, a prototype tool implementing the transformations for monitoring multi-threaded systems described in the Behavior, Interaction, Priority (BIP) framework, an expressive framework for the formal construction of heterogeneous systems. Our experiments on several multi-threaded BIP systems show that RVMT-BIP induces a cheap runtime overhead.
000, [INFO.INFO-SE] Computer Science [cs]/Software Engineering [cs.SE], [INFO.INFO-ES]Computer Science [cs]/Embedded Systems, [INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE], Distributed systems, 004, [INFO.INFO-ES] Computer Science [cs]/Embedded Systems
000, [INFO.INFO-SE] Computer Science [cs]/Software Engineering [cs.SE], [INFO.INFO-ES]Computer Science [cs]/Embedded Systems, [INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE], Distributed systems, 004, [INFO.INFO-ES] Computer Science [cs]/Embedded Systems
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
