Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mathematikaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mathematika
Article . 2002 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Local inversion for differentiable functions and the Darboux property

Local inversion for differentiable functions and the Darboux property.
Authors: Raymond, Jean Saint;

Local inversion for differentiable functions and the Darboux property

Abstract

Eine differenzierbare (nicht notwendigerweise stetig differenzierbare) Funktion \(\mathbb{R}\to \mathbb{R}\) mit nirgends verschwindender Ableitung ist bekanntlich injektiv; der entsprechende Satz im \(\mathbb{R}^n\) wird üblicherweise nur für stetig differenzierbare Abbildungen gezeigt. Hauptresultat der Arbeit ist der Beweis dieses mehrdimensionalen Umkehrsatzes für nur differenzierbare Abbildungen; ein Gegenbeispiel in \(l^2\) belegt, dass dieses Ergebnis nicht in unendlichdimensionalen Banachräumen gelten kann. Weiterhin ergibt sich eine Übertragung der Darboux-Eigenschaft differenzierbarer Funktionen \(\mathbb{R}\to\mathbb{R}\) (``eine Ableitung macht keine Sprünge'') auf den \(\mathbb{R}^n\), allerdings unter der Voraussetzung nichtverschwindender Funktionaldeterminante. Auf diese -- im Eindimensionalen nicht benötigte Voraussetzung -- kann schon im Zweidimensionalen nicht verzichtet werden, wie durch ein elementares Gegenbeispiel gezeigt wird.

Related Organizations
Keywords

Darboux property, Implicit function theorems, Jacobians, transformations with several variables, implicit function theorem, Abstract inverse mapping and implicit function theorems involving nonlinear operators, differentiable functions, local inversion, Implicit function theorems; global Newton methods on manifolds

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!