Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neurocomputingarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neurocomputing
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Article . 2018
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neurocomputing
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Approximation capability of two hidden layer feedforward neural networks with fixed weights

Authors: Guliyev, Namig; Ismailov, Vugar;

Approximation capability of two hidden layer feedforward neural networks with fixed weights

Abstract

We algorithmically construct a two hidden layer feedforward neural network (TLFN) model with the weights fixed as the unit coordinate vectors of the $d$-dimensional Euclidean space and having $3d+2$ number of hidden neurons in total, which can approximate any continuous $d$-variable function with an arbitrary precision. This result, in particular, shows an advantage of the TLFN model over the single hidden layer feedforward neural network (SLFN) model, since SLFNs with fixed weights do not have the capability of approximating multivariate functions.

13 pages, 3 figures; this article uses the algorithm from arXiv:1708.06219; for associated SageMath worksheet, see https://sites.google.com/site/njguliyev/papers/tlfn

Keywords

FOS: Computer and information sciences, Computer Science - Information Theory, multilayer feedforward neural network, [INFO.INFO-NE] Computer Science [cs]/Neural and Evolutionary Computing [cs.NE], 41A30, 41A63, 65D15, 68T05, 92B20, hidden layer, [MATH.MATH-IT] Mathematics [math]/Information Theory [math.IT], C.1.3, FOS: Mathematics, C.1.3; F.1.1; I.2.6; I.5.1, activation function, Mathematics - Numerical Analysis, Neural and Evolutionary Computing (cs.NE), I.5.1, I.2.6, Information Theory (cs.IT), Computer Science - Neural and Evolutionary Computing, weight, Numerical Analysis (math.NA), [MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA], sigmoidal function, the Kolmogorov superposition theorem, [INFO.INFO-IT] Computer Science [cs]/Information Theory [cs.IT], F.1.1

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 1%
Top 10%
Top 10%
Green
bronze