Downloads provided by UsageCounts
handle: 2117/114369
The final publication is available at Springer via http://dx.doi.org/10.1007/s11139-016-9824-y This article is devoted to the elliptic Stark conjecture formulated by Darmon (Forum Math Pi 3:e8, 2015), which proposes a formula for the transcendental part of a p-adic avatar of the leading term at s=1 of the Hasse–Weil–Artin L-series L(E,¿1¿¿2,s) of an elliptic curve E/Q twisted by the tensor product ¿1¿¿2 of two odd 2-dimensional Artin representations, when the order of vanishing is two. The main ingredient of this formula is a 2×2 p-adic regulator involving the p-adic formal group logarithm of suitable Stark points on E. This conjecture was proved by Darmon (Forum Math Pi 3:e8, 2015) in the setting where ¿1 and ¿2 are induced from characters of the same imaginary quadratic field K. In this note, we prove a refinement of this result that was discovered experimentally by Darmon (Forum Math Pi 3:e8, 2015, [Remark 3.4]) in a few examples. Namely, we are able to determine the algebraic constant up to which the main theorem of Darmon (Forum Math Pi 3:e8, 2015) holds in a particular setting where the Hida–Rankin p-adic L-function associated to a pair of Hida families can be exploited to provide an alternative proof of the same result. This constant encodes local and global invariants of both E and K. Peer Reviewed
Grups discontinus, elliptic units, Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols, Classificació AMS::11 Number theory::11F Discontinuous groups and automorphic forms, Classificació AMS::11 Number theory::11G Arithmetic algebraic geometry (Diophantine geometry), \(p\)-adic modular forms, :Matemàtiques i estadística::Àlgebra::Teoria de grups [Àrees temàtiques de la UPC], elliptic curves, :11 Number theory::11F Discontinuous groups and automorphic forms [Classificació AMS], Elliptic curves, p-Adic modular forms, :Matemàtiques i estadística::Àlgebra::Teoria de nombres [Àrees temàtiques de la UPC], Special values, Elliptic units, Geometria algèbrica--Aritmètic, \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture, Birch and Swinnerton-Dyer conjecture, Àrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra::Teoria de grups, Congruences for modular and \(p\)-adic modular forms, Elliptic and modular units, Elliptic curves over global fields, special values, :11 Number theory::11G Arithmetic algebraic geometry (Diophantine geometry) [Classificació AMS], Arithmetical algebraic geometry, Àrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra::Teoria de nombres, Discontinuous groups
Grups discontinus, elliptic units, Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols, Classificació AMS::11 Number theory::11F Discontinuous groups and automorphic forms, Classificació AMS::11 Number theory::11G Arithmetic algebraic geometry (Diophantine geometry), \(p\)-adic modular forms, :Matemàtiques i estadística::Àlgebra::Teoria de grups [Àrees temàtiques de la UPC], elliptic curves, :11 Number theory::11F Discontinuous groups and automorphic forms [Classificació AMS], Elliptic curves, p-Adic modular forms, :Matemàtiques i estadística::Àlgebra::Teoria de nombres [Àrees temàtiques de la UPC], Special values, Elliptic units, Geometria algèbrica--Aritmètic, \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture, Birch and Swinnerton-Dyer conjecture, Àrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra::Teoria de grups, Congruences for modular and \(p\)-adic modular forms, Elliptic and modular units, Elliptic curves over global fields, special values, :11 Number theory::11G Arithmetic algebraic geometry (Diophantine geometry) [Classificació AMS], Arithmetical algebraic geometry, Àrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra::Teoria de nombres, Discontinuous groups
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 56 | |
| downloads | 73 |

Views provided by UsageCounts
Downloads provided by UsageCounts