Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Expert Systems with ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Expert Systems with Applications
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A multi-objective heuristic algorithm for gene expression microarray data classification

Authors: Jia Lv; Qinke Peng; Xiao Chen; Zhi Sun;

A multi-objective heuristic algorithm for gene expression microarray data classification

Abstract

A multi-objective model for microarray based on analytic hierarchy process is built.A heuristic algorithm improved from UMDA called MOEDA is to solve the model.Both classification accuracy and number of genes are the objectives.The classification accuracy is treated absolutely important than the number of genes.It always gets high accuracy with small number of genes on microarray data. Microarray data has significant potential in clinical medicine, which always owns a large quantity of genes relative to the samples' number. Finding a subset of discriminatory genes (features) through intelligent algorithms has been trend. Based on this, building a disease prognosis expert system will bring a great effect on clinical medicine. In addition, the fewer the selected genes are, the less cost the disease prognosis expert system is. So the small gene set with high classification accuracy is what we need. In this paper, a multi-objective model is built according to the analytic hierarchy process (AHP), which treats the classification accuracy absolutely important than the number of selected genes. And a multi-objective heuristic algorithm called MOEDA is proposed to solve the model, which is an improvement of Univariate Marginal Distribution Algorithm. Two main rules are designed, one is 'Higher and Fewer Rule' which is used for evaluating and sorting individuals and the other is 'Forcibly Decrease Rule' which is used for generate potential individuals with high classification accuracy and fewer genes. Our proposed method is tested on both binary-class and multi-class microarray datasets. The results show that the gene set selected by MOEDA not only results in higher accuracies, but also keep a small scale, which cannot only save computational time but also improve the interpretability and application of the result with the simple classification model. The proposed MOEDA opens up a new way for the heuristic algorithms applying on microarray gene expression data.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!