
Subject: the use of the mathematical apparatus of neural networks for the scientific substantiation of anti-epidemic measures in order to reduce the incidence of diseases when making effective management decisions. Purpose: to apply cluster analysis, based on a neural network, to solve the problem of identifying areas of incidence. Tasks: to analyze methods of data analysis to solve the clustering problem; to develop a neural network method for clustering the territory of Ukraine according to the nature of the epidemic process COVID-19; on the basis of the developed method, to implement a data analysis software product to identify the areas of incidence of the disease using the example of the coronavirus COVID-19. Methods: models and methods of data analysis, models and methods of systems theory (based on the information approach), machine learning methods, in particular the Adaptive Boosting method (based on the gradient descent method), methods for training neural networks. Results: we used the data of the Center for Public Health of the Ministry of Health of Ukraine distributed over the regions of Ukraine on the incidence of COVID-19, the number of laboratory examined persons, the number of laboratory tests performed by PCR and ELISA methods, the number of laboratory tests of IgA, IgM, IgG; the model used data from March 2020 to December 2020, the modeling did not take into account data from the temporarily occupied territories of Ukraine; for cluster analysis, a neural network of 60 input neurons, 100 hidden neurons with an activation Fermi function and 4 output neurons was built; for the software implementation of the model, the programming language Python was used. Conclusions: analysis of methods for constructing neural networks; analysis of training methods for neural networks, including the use of the gradient descent method for the Adaptive Boosting method; all theoretical information described in this work was used to implement a software product for processing test data for COVID-19 in Ukraine; the division of the regions of Ukraine into zones of infection with the COVID-19 virus was carried out and a map of this division was presented.
эпидемический процесс, кластерный анализ, neural network, epidemic process, COVID-19, епідемічний процес, машинне навчання, кластерний аналіз, машинное обучение, нейронная сеть, ; machine learning, нейронна мережа, cluster analysis
эпидемический процесс, кластерный анализ, neural network, epidemic process, COVID-19, епідемічний процес, машинне навчання, кластерний аналіз, машинное обучение, нейронная сеть, ; machine learning, нейронна мережа, cluster analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
