Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Journal of Sele...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Novel Spaceborne SAR Constellation Scheduling Algorithm for Sea Surface Moving Target Search Tasks

Authors: Dacheng Liu; Sheng Chang; Yunkai Deng; Zhihui He; Feng Wang; Zixuan Zhang; Chuanzhao Han; +1 Authors

A Novel Spaceborne SAR Constellation Scheduling Algorithm for Sea Surface Moving Target Search Tasks

Abstract

With the expanding scope of human activities in marine environments, the efficient detection and tracking of mobile targets on the ocean's surface have become increasingly crucial. Synthetic aperture radar (SAR) constellation can obtain ground observation data based on user requests and subject to visibility conditions. Now it is an indispensable tool in sea surface moving target search tasks. Satellite constellation resources are scarce and limited, and user demands are diverse. How to rationally dispatch satellite constellation resources to meet user needs to the maximum extent and improve the application efficiency of satellite resources is an urgent scientific problem that needs to be solved. This article mainly expounds two respects of work. First, modeling SAR constellation scheduling problem for sea surface moving target search tasks to establish the objective function. Second, a novel multistrategy discrete constrained differential evolution algorithm denoted as MSDCDE is proposed in the article. The proposed MSDCDE algorithm integrates cross strategy based on discrete variables, constraint handling techniques, population restart strategy, and left-shift local strategy, which can effectively avoid falling into local optimality, thereby achieving global optimality and improving search and rescue performances. Six sets of experiments, totaling 215 runs, have been conducted to validate the effectiveness of the proposed resolution process framework and the MSDCDE algorithm. The proposed method demonstrated an over 48.98% performance improvement compared with some state-of-the-art algorithms and significantly reduced task completion time.

Related Organizations
Keywords

Ocean engineering, task scheduling, QC801-809, Geophysics. Cosmic physics, SAR constellation, synthetic aperture radar (SAR), TC1501-1800, Sea surface moving target search

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
gold