
In this article, we design an incremental method for computing seeded watershed cuts for interactive image segmentation. We propose an algorithm based on the hierarchical image representation called the binary partition tree to compute a seeded watershed cut. Additionally, we leverage properties of minimum spanning forests to introduce a parallel method for labeling a connected component. We show that those algorithms fits perfectly in an interactive segmentation process by handling user interactions, seed addition or removal, in linear time with respect to the number of affected pixels. Run time comparisons with several state-of-the-art interactive and non-interactive watershed methods show that the proposed method can handle user interactions much faster than previous methods with a significant speedup ranging from 10 to 60 on both 2D and 3D images, thus improving the user experience on large images.
[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV]
[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
