Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Newcastle University...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamic Power Quality Disturbance Classification in Grid-Integrated PV Systems: Leveraging Clark Transformed Modal Voltage and Subspace Weighted KNN

Authors: Sairam Mishra; Ranjan Kumar Mallick; Pravati Nayak; Thaiyal Naayagi Ramasamy; Gayadhar Panda;

Dynamic Power Quality Disturbance Classification in Grid-Integrated PV Systems: Leveraging Clark Transformed Modal Voltage and Subspace Weighted KNN

Abstract

This study focuses on detecting Power Quality Disturbance Events (PQDE) in microgrids integrated with a Solar Energy Conversion System (SECS). The research proposes a novel signal reduction technique called Clark Transformed Modal, which reduces three-phase voltage to a single unit signal, optimizing memory utilization and reducing computational load during feature extraction. A total of 16 features are extracted from the proposed modal signal by performing multi-resolution analysis through Maximum Overlap Discrete Wavelet Transform (MODWT). Various disturbances, including sag, swell, transients, notches, and flicker, are intentionally simulated in a PV-grid tied MATLAB/Simulink model to obtain a dataset of 10800 samples. Further, the dataset is randomly divided into training-testing subsets to verify the classification ability of a novel ensemble classifier called subspace weighted k-nearest Neighbor (SWKNN). In addition to that the optimum mother wavelet (dmay) is identified to even further boost the classifier performance. The results demonstrate the superior classification capabilities of the proposed MODWT-SWKNN classifier in terms of various performance metrics like precision, recall and F1-score. It also outperformed when compared with several competitive PQ classification models based on PV-integrated systems both under ideal and noisy conditions. Additionally, the disturbance detection system is validated in an OPAL-RT real-time environment to demonstrate its efficiency in terms of detection time. The accuracy of detection is found to be 99.74% in ideal case and fall back to no more than 3% regulation i.e., 97.28% even in dense noise of 20dB with as low as 8 WKNN subspaces. Further, average detection time with 500 trails is found to be 0.0285 seconds. The efficacy of the proposed PQ detection algorithm is also tested in a large PV integrated IEEE 13-bus system.

Keywords

power quality classification, microgrid, kth nearest neighbour, Clark transform, maximum overlap discrete wavelet transform, Electrical engineering. Electronics. Nuclear engineering, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold