Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Cybernetics
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

IMS-CDA: Prediction of CircRNA-Disease Associations From the Integration of Multisource Similarity Information With Deep Stacked Autoencoder Model

Authors: Lei Wang; Zhu-Hong You; Jian-Qiang Li; Yu-An Huang;

IMS-CDA: Prediction of CircRNA-Disease Associations From the Integration of Multisource Similarity Information With Deep Stacked Autoencoder Model

Abstract

Emerging evidence indicates that circular RNA (circRNA) has been an indispensable role in the pathogenesis of human complex diseases and many critical biological processes. Using circRNA as a molecular marker or therapeutic target opens up a new avenue for our treatment and detection of human complex diseases. The traditional biological experiments, however, are usually limited to small scale and are time consuming, so the development of an effective and feasible computational-based approach for predicting circRNA-disease associations is increasingly favored. In this study, we propose a new computational-based method, called IMS-CDA, to predict potential circRNA-disease associations based on multisource biological information. More specifically, IMS-CDA combines the information from the disease semantic similarity, the Jaccard and Gaussian interaction profile kernel similarity of disease and circRNA, and extracts the hidden features using the stacked autoencoder (SAE) algorithm of deep learning. After training in the rotation forest (RF) classifier, IMS-CDA achieves 88.08% area under the ROC curve with 88.36% accuracy at the sensitivity of 91.38% on the CIRCR2Disease dataset. Compared with the state-of-the-art support vector machine and K -nearest neighbor models and different descriptor models, IMS-CDA achieves the best overall performance. In the case studies, eight of the top 15 circRNA-disease associations with the highest prediction score were confirmed by recent literature. These results indicated that IMS-CDA has an outstanding ability to predict new circRNA-disease associations and can provide reliable candidates for biological experiments.

Related Organizations
Keywords

Cluster Analysis, Computational Biology, Humans, RNA, Circular, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!