Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Psychiatryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Psychiatry
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Serveur académique lausannois
Article . 2023
License: CC BY
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of four novel loci associated with psychotropic drug-induced weight gain in a Swiss psychiatric longitudinal study: A GWAS analysis

Authors: Jennifer Sjaarda; Aurélie Delacrétaz; Céline Dubath; Nermine Laaboub; Marianna Piras; Claire Grosu; Frederik Vandenberghe; +8 Authors

Identification of four novel loci associated with psychotropic drug-induced weight gain in a Swiss psychiatric longitudinal study: A GWAS analysis

Abstract

AbstractPatients suffering from mental disorders are at high risk of developing cardiovascular diseases, leading to a reduction in life expectancy. Genetic variants can display greater influence on cardiometabolic features in psychiatric cohorts compared to the general population. The difference is possibly due to an intricate interaction between the mental disorder or the medications used to treat it and metabolic regulations. Previous genome wide association studies (GWAS) on antipsychotic-induced weight gain included a low number of participants and/or were restricted to patients taking one specific antipsychotic. We conducted a GWAS of the evolution of body mass index (BMI) during early (i.e., ≤ 6) months of treatment with psychotropic medications inducing metabolic disturbances (i.e., antipsychotics, mood stabilizers and some antidepressants) in 1135 patients from the PsyMetab cohort. Six highly correlated BMI phenotypes (i.e., BMI change and BMI slope after distinct durations of psychotropic treatment) were considered in the analyses. Our results showed that four novel loci were associated with altered BMI upon treatment at genome-wide significance (p < 5 × 10−8): rs7736552 (near MAN2A1), rs11074029 (in SLCO3A1), rs117496040 (near DEFB1) and rs7647863 (in IQSEC1). Associations between the four loci and alternative BMI-change phenotypes showed consistent effects. Replication analyses in 1622 UK Biobank participants under psychotropic treatment showed a consistent association between rs7736552 and BMI slope (p = 0.017). These findings provide new insights into metabolic side effects induced by psychotropic drugs and underline the need for future studies to replicate these associations in larger cohorts.

Country
Switzerland
Keywords

Psychotropic Drugs, beta-Defensins, Humans, Humans; Genome-Wide Association Study; Antipsychotic Agents/adverse effects; Longitudinal Studies; Switzerland; Psychotropic Drugs/adverse effects; Weight Gain/genetics; beta-Defensins/genetics, Longitudinal Studies, Weight Gain, Article, Switzerland, Genome-Wide Association Study, Antipsychotic Agents

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green
hybrid
Related to Research communities