Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Reports
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Reports
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-objective optimum design of five-phase squirrel cage induction motor by differential evolution algorithm

Authors: Hansi Chen; Jinghong Zhao; Hanming Wang; Qingfei Zhang; Xiangyu Luo; Hao Xu; Yiyong Xiong;

Multi-objective optimum design of five-phase squirrel cage induction motor by differential evolution algorithm

Abstract

Compared with the traditional induction motors, five-phase squirrel cage induction motor (FSCIM) have the advantages of lower torque ripple and single-phase power, flexible control strategy, higher power density and fault-tolerant operation, which has been widely applied on electrical vehicles, rail transit, underwater vehicles and so on. This paper presents an analytical design optimization method based on the coupling of electromagnetic equivalent circuit (EEC) and differential evolution algorithm (DEA). Furthermore, the difference between three and five-phase winding on harmonic specific leakage permeance is investigated in detail. The nonlinear and oeolotropic influences of design geometrical parameters (slots openings, main dimension ratio, yoke height, airgap length, etc.) on the performances of the basic FSCIM model are evaluated with analytical model. For more accurate results, the harmonic characteristics of five-phase winding structure, iron core saturation, rotor slot skew width, stator end winding, slot leakage inductance and stator and rotor slot structure are considered. Meanwhile, the efficiency, power factor, maximum torque, slot fill factor and material consumption of FSCIM are calculated as the comprehensive objective function. The transient finite element analysis (TFEA) and experimental test verify the accuracy of the proposed optimum model. In addition, the feasibility of the multi objective optimization design scheme provided by the analytical model is verified by TFEA.

Related Organizations
Keywords

Fast performance computation, Differential evolution algorithm, Multi objective optimization, Electrical engineering. Electronics. Nuclear engineering, Five-phase induction motor, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
gold