Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Вестник Научно-иссле...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reduction of electric power losses by the reactive power compensation unit at the point of AC electric traction network sectioning

Authors: Leonid A. German; Aleksander S. Serebryakov;

Reduction of electric power losses by the reactive power compensation unit at the point of AC electric traction network sectioning

Abstract

Changes of electric traction network with regulated and not-regulated reactive power compensation units (CU) are required due to switching on the reactive power static generators at the AC electric traction network sectioning points the specifying calculations of the reactive power. The method of calculation of power losses in the traction network with regulated and not-regulated cross capacity compensation units at the sectioning point was developed. The main positive effect of CU at the sectioning point is increasing of the carrying capacity of the railroad sections. However, calculation of CU effectiveness for reduction of electric power losses, as well as calculation of continuously controlled CU requires appropriate calculations. It is demonstrated that CU effectiveness at the sectioning points of reactive power compensation is reduced in connection with distribution of the draft load; CU regulation effectiveness is also reduced as a response to increase of the carrying capacity of the railroad section, which allows assessing the proposed calculation formulae. Presented examples of calculation for the actual baseline data demonstrate that full losses in the traction network (assumed as 100%) can be reduced by using of CU of the sectioning point up to 21% maximum with continuously controlled units and up to 13.4% with uncontrolled CU. As automatics of the reactive power static generator is designed for increasing the carrying capacity of the railroad, its operation frequently complies with the reactive power overcompensation regime when losses in the traction network are increased.

Related Organizations
Keywords

перекомпенсация, regulated settings, Railroad engineering and operation, power factor compensation, компенсация реактивной мощности, регулируемые установки, overcompensation, power losses, потери мощности, section pillar, пост секционирования, TF1-1620

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities