Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ INRIA2arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
INRIA2
Conference object . 2025
Data sources: INRIA2
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL Clermont Université
Conference object . 2025
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1145/371225...
Article . 2025 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rank-based Linear-Quadratic Surrogate Assisted CMA-ES

Authors: Mohamed Gharafi; Nikolaus Hansen; Rodolphe Le Riche; Dimo Brockhoff;

Rank-based Linear-Quadratic Surrogate Assisted CMA-ES

Abstract

Dans ce poster, nous présentons une variante de CMA-ES assistée par un métamodèle basé sur les rangs. Contrairement aux approches précédentes qui exploitent l'information de rang comme contrainte pour entraîner un classifieur SVM, notre méthode repose sur une régression linéaire-quadratique appliquée aux rangs. Nous étudions empiriquement l'invariance de cette approche. Bien que ce premier algorithme surpasse CMA-ES dans la plupart des cas, il n’atteint pas pleinement les performances de lq-CMA-ES. Pour pallier cette limitation, nous proposons une variante améliorée combinant deux modèles alternatifs : l’un fondé sur les rangs, l’autre sur les valeurs originales de la fonction objectif. Cette nouvelle version renonce à l’invariance stricte, mais gagne en robustesse et atteint des performances comparables, voire supérieures, à celles de lq-CMA-ES sur des problèmes transformés. Ce dernier algorithme montre comment l’intégration simple de nouvelles transformations des rangs peut améliorer toute variante de CMA-ES reposant sur un métamodèle.

In this poster, we introduce a rank-based surrogate-assisted variant of CMA-ES. Unlike previous methods that employ rank information as constraints to train an SVM classifier, our approach employs a linear-quadratic regression on the ranks. We investigate the method's invariance empirically. While this first algorithm outperforms CMA-ES with a few exceptions, it falls short to entirely meet the lq-CMA-ES performance levels. To address this, we propose an enhanced variant that handles together two alternative surrogates, one based on the ranks and one based on the original function values. Although this variant sacrifices strict invariance, it gains in robustness and achieves performance comparable to, or even exceeding, lq-CMA-ES on transformed problems. This last algorithm shows how simply incorporating new transformations of rank values could improve any surrogate-based CMA-ES variant.

Keywords

Surrogate-assisted optimization, Surrogate models, Invariance, [MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC], CMA-ES, [INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities