Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1038/s41598...
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doaj.org/article/80a5e...
Article . 2024
Data sources: DOAJ
https://dx.doi.org/10.60692/27...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.60692/k6...
Other literature type . 2024
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification and clinicopathological analysis of potential p73-regulated biomarkers in colorectal cancer via integrative bioinformatics

تحديد وتحليل سريري مرضي للمؤشرات الحيوية المحتملة الخاضعة للتنظيم p73 في سرطان القولون والمستقيم عبر المعلوماتية الحيوية التكاملية
Authors: Chanchal Bareja; Kountay Dwivedi; Apoorva Uboveja; Ankit Mathur; Naveen Kumar; Daman Saluja;

Identification and clinicopathological analysis of potential p73-regulated biomarkers in colorectal cancer via integrative bioinformatics

Abstract

AbstractThis study aims to decipher crucial biomarkers regulated by p73 for the early detection of colorectal cancer (CRC) by employing a combination of integrative bioinformatics and expression profiling techniques. The transcriptome profile of HCT116 cell line p53$$^{-/-}$$ - / - p73$$^{+/+}$$ + / + and p53$$^{-/-}$$ - / - p73 knockdown was performed to identify differentially expressed genes (DEGs). This was corroborated with three CRC tissue expression datasets available in Gene Expression Omnibus. Further analysis involved KEGG and Gene ontology to elucidate the functional roles of DEGs. The protein-protein interaction (PPI) network was constructed using Cytoscape to identify hub genes. Kaplan–Meier (KM) plots along with GEPIA and UALCAN database analysis provided the insights into the prognostic and diagnostic significance of these hub genes. Machine/deep learning algorithms were employed to perform TNM-stage classification. Transcriptome profiling revealed 1289 upregulated and 1897 downregulated genes. When intersected with employed CRC datasets, 284 DEGs were obtained. Comprehensive analysis using gene ontology and KEGG revealed enrichment of the DEGs in metabolic process, fatty acid biosynthesis, etc. The PPI network constructed using these 284 genes assisted in identifying 20 hub genes. Kaplan–Meier, GEPIA, and UALCAN analyses uncovered the clinicopathological relevance of these hub genes. Conclusively, the deep learning model achieved TNM-stage classification accuracy of 0.78 and 0.75 using 284 DEGs and 20 hub genes, respectively. The study represents a pioneer endeavor amalgamating transcriptomics, publicly available tissue datasets, and machine learning to unveil key CRC-associated genes. These genes are found relevant regarding the patients’ prognosis and diagnosis. The unveiled biomarkers exhibit robustness in TNM-stage prediction, thereby laying the foundation for future clinical applications and therapeutic interventions in CRC management.

Keywords

Pulmonary and Respiratory Medicine, p53, FOS: Computer and information sciences, Mechanisms and Implications of Ferroptosis in Cancer, Pancreatic Cancer Research and Treatment, Bioinformatics, Science, Integrative bioinformatics, Kaplan-Meier Estimate, Gene expression omnibus, Gene, Article, Database, Health Sciences, Biomarkers, Tumor, Genetics, Humans, Protein Interaction Maps, Transcriptomics, Biology, P53, TNM stage, Gene Expression Profiling, Q, P73, R, Computational Biology, The p53 Signaling Network in Cancer Research, Tumor Protein p73, Prognosis, HCT116 Cells, Computer science, Gene expression profiling, Gene Expression Regulation, Neoplastic, Algorithm, Oncology, FOS: Biological sciences, Medicine, Gene expression, Colorectal Neoplasms, Transcriptome

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid