
handle: 11531/7690 , 11449/113622
The hydroelectric power plant HidroItuango represents a major expansion for the Colombian electrical system (with a total capacity of 2400 MW). This paper analyzes the possible interconnections and investments involved in connecting HidroItuango, in order to strengthen the Colombian national transmission system. A Mixed Binary Linear Programming (MBLP) model was used to solve the Multistage Transmission Network Expansion Planning (MTEP) problem of the Colombian electrical system, taking the N-1 safety criterion into account. The N-1 safety criterion indicates that the transmission system must be expanded so that the system will continue to operate properly if an outage in a system element (within a pre-defined set of contingencies) occurs. The use of a MBLP model guaranteed the convergence with existing classical optimization methods and the optimal solution for the MTEP using commercial solvers. Multiple scenarios for generation and demand were used to consider uncertainties within these parameters. The model was implemented using the algebraic modeling language AMPL and solved using the commercial solver CPLEX. The proposed model was then applied to the Colombian electrical system using the planning horizon of 2018-2025.
info:eu-repo/semantics/publishedVersion
Artículos en revistas
Scenarios for generation and demand, N-1 safety criterion, Expansion Planning, 600, Mixed Binary Linear Programming, Multistage Transmission Network, 510
Scenarios for generation and demand, N-1 safety criterion, Expansion Planning, 600, Mixed Binary Linear Programming, Multistage Transmission Network, 510
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
