
Bowditch characterized relative hyperbolicity in terms of group actions on fine hyperbolic graphs with finitely many edge orbits and finite edge stabilizers. In this paper, we define generalized fine actions on hyperbolic graphs, in which the peripheral subgroups are allowed to stabilize finite subgraphs rather than stabilizing a point. Generalized fine actions are useful for studying groups that act relatively geometrically on a CAT(0) cube complex, which were recently defined by the first two authors. Specifically, we show that any group acting relatively geometrically on a CAT(0) cube complex admits a generalized fine action on the one-skeleton of the cube complex. For generalized fine actions, we prove a criterion for relative quasiconvexity of subgroups that cocompactly stabilize quasiconvex subgraphs, generalizing a result of Martínez-Pedroza and Wise in the setting of fine hyperbolic graphs. As an application, we obtain a characterization of boundary separation in generalized fine graphs and use it to prove that Bowditch boundary points in relatively geometric actions are always separated by a hyperplane stabilizer.
Mathematics - Geometric Topology, FOS: Mathematics, Geometric Topology (math.GT), Group Theory (math.GR), Mathematics - Group Theory, Uncategorized
Mathematics - Geometric Topology, FOS: Mathematics, Geometric Topology (math.GT), Group Theory (math.GR), Mathematics - Group Theory, Uncategorized
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
